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* Flood defenses
* Flood insurance

> self-protection = reducing probability of an event

These measures are often cost effective in the long run

@ B protective
= measures
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Investment
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flood preparedness: the game

You own: your house and you have 65,000 ECU on your savings account

AARARARRAARAARARAARAAR
RARRRARAARARARAAAAARN
ARAARAAAAAARAARARRAR
AARARARAARAAARAAARARR
ARARARARARARAAAARARARARAR

Flood probability is
1 percent per year

O

25 year
scenario

f

Damage 50,000 ECU
in case of flooding

open the instructions

‘ final scenario

aiss
-

No insurance

In case of a flood you pay the full damage.

How much do you want to invest to reduce flood damage?

A 0 ECU A 1,000 ECU A, 5000 ECU A\, 10,000 ECU A, 15000 ECU

do not invest:
accept 50,000 ECU
damage

reduce damage to
45,242 ECU

reduce damage to
30,327 ECU

reduce damage to
18,394 ECU

reduce damage to
T4.157 ECU
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FIOOdS open the instructions '

You own: your house and you have 64,000 ECU on your savings account

Your home was not flooded.

ftAAAAANAAAANAAAAAAANAAN

__________

__________

ARAANTAANAANAAAAARNAARANA
AAAAAAANANAAAAAARAANAARA
fAANAAAANAAANAAAANAANN

100 homes are depicted above. All homes that have been flooded at least once in the past 25 years, are indicated in blue. Because your
home was not flooded, you do not need to pay to recover the damage.
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flood preparedness (lab: test incentives)

N a
* N

N *
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get fixed flood risk result: if flooded, pay
income
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Mol, J. M., Botzen, W. J. W., & Blasch, J. E. (2020). Behavioral motivations for self-insurance under different disaster risk insurance schemes.
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flood preparedness (lab: test insurance types)

In this scenario your house may be flooded in the coming 25 years (the probability is 1 percent per year so approximately 22 percent in 25 years).
If you own insurance and your house is flooded, you will pay 2.500 ECU.

ﬁ insurer pays you pay
95 percent 5 percent
T damage (deductible)

If you are uninsured and your house is flooded, you need to pay the full damage of 50.000 ECU .
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flood preparedness (online: test social norms)

\ 0 ECU % 1,000 ECU %\ 5000 ECU “\ 10,000 ECU %\ 15,000 ECU

do not invest: reduce damage to reduce damage to reduce damage to reduce damage to
accept 50,000 ECU 45,242 ECU 30,327 ECU 18,394 ECU 11,157 ECU

damage
? Previously, 70% of homeowners opted for damage reducing measures.
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flood preparedness with Virtual Reality




UNIVERSITY OF AMSTERDAM
M Amsterdam School of Economics

@

Important predictors of flood preparedness



B UNIVERSITY OF AMSTERDAM
M Amsterdam School of Economics

Important predictors of flood preparedness

¢ EXperlenCC (Grothmann and Reusswig, 2006; Guo and Li, 2016; Osberghaus, 2017)

- Water levels

- Damage
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Important predictors of flood preparedness

* EXpEerience (Grothmann and Reusswig, 2006; Guo and Li, 2016; Osberghaus, 2017)
- Water levels
- Damage

* Coping values Bubeck et al., 2013)

- Response efficacy (perceived effectiveness of measures)

- Self-efficacy (subjective feeling of being able to install measures)
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Virtual Reality experience

Sandbag = stack sandbags to protect home

(a) Sandbag
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Protected = check protected home from inside

(a) Sandbag (b) Protected
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Sandbag = stack sandbags to protect home
Protected = check protected home from inside
Neighbors = check unprotected home from neighbors

(a) Sandbag (b) Protected (c) Neighbors
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Video at https://vimeo.com/482506190
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Control group n =276 at home
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Homeowners from the Amsterdam area
Control group n =276 at home
VR group n = 108 in the lab + follow-up 4 weeks later (n = 78)

Dependent variables:
- Flood risk investment game

- Risk perception
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Results flood risk investment

oecu 8 1000ecu [l s000ecu | 10.000ecu i} 15,000 ECU

100% A

75% 4

50% 1

25% 1

0% 4

Con'trol
(n = 276)
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Results flood risk investment

oecu 8 1000ecu [l s000ecu | 10.000ecu i} 15,000 ECU

n.s.

100% A

75% 4

50% 1

25% 1

0% 4

2019 Control
(n = 297) (n = 276)
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Results flood risk investment

oecu 8 1000ecu [l s000ecu | 10.000ecu i} 15,000 ECU

100% A

75% 4

50% 1

25% 1

0% 4

2019 Control VR total
(n = 297) (n = 276) (n = 108)
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Results flood risk investment

oecu 8 1000ecu [l s000ecu | 10.000ecu i} 15,000 ECU

100% A

75% 4

50% 1

25% 1

0% 4

2019 Con'trol VR total VR no dropout
(n=297) (n =276) (n=108) (n=178)
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Results flood risk investment

oecu 8 1000ecu [l s000ecu | 10.000ecu i} 15,000 ECU

100% A

75% 4

50% 1

25% 1

0% 4

20'1 9 Con'trol VR fotal VR no dropout VR foII'ow-up
(n =297) (n=276) (n=108) (n=78) (n=78)
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Results risk perception

D Pre-intervention survey |:| After VR experience

k%

Expected damage
*k

Perceived flood probability
*k

Expected water levels
n.s.

Worry

Low High

Stars indicate significance of Wilcoxon signed-rank tests recruitment survey vs. after VR experience
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Null results (1)

Response efficacy

Wary effactiva 5 n.5. s

Effedtive

Meither effective |
nor ineffactive

Inaffactive 4

Wery ineffective -
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Null results (2)

After VR experience I VR follow-up

40% -
EBD%-
@
O 20% -
0% 4 [I E.I:Lil&_-m_m_.._-
o 1 =2 3 4 5 8 T & 89 10 11 12

Number of reported measures

Mo significant difference between distributions (Wilcoxon signed-rank test, p = 0.28)
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* Low tech next step?

* ¢.g. augmented reality
* High expectations may hamper the effect
* Decrease 1n effect over time

e Pure lab-effect?




B UNIVERSITY OF AMSTERDAM
M Amsterdam School of Economics

Participant (50).: “Oh no, my precious BBQ!”
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Participant (50).: “Oh no, my precious BBQ!”

Participant (65) searches for wallet 1n (real-life) pockets and realizes it 1s not there...
“Oh well, I am not carrying my creditcard so we are good!”
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Saffir-Simpson Hurricane Scale

Only represents wind hazards 000G

ILTETEN HURRICANE IAN
Hurricane lan makes landfallin Florida
Saffir-Simpson scale as 155mph Category 4 monster
Wind speeds By Ben Kesslen September 28, 2022 | 3:27pm | Updated

m/s knots (kn) mph km/h

Three 50-58m/s  96-112kn 111-129 mph 178-208 km/h
Two 43-49 m/s 83-95 kn 96-110 mph  154-177 km/h
One 33—-42 m/s 64-82 kn 74-95 mph  119-1583 km/h

Related classifications

Tropical
storm

18-32m/s 34-63kn 39-73mph 63-118 km/h
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Saffir-Simpson Hurricane Scale

Only represents wind hazards

1% 3%

Cause of death

. storm surge
. preciptation
B v

. surf

. ofishore
. tornado
. other

ORIGINAL SCALE

Saffir-Simpson Hurricane Wind Scale
(SSWHYS)

based on
wind
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Collins et al (2021) NSF grant #2052268

Saffir-Simpson gone bad

Example: Hurricane Sally
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Collins et al (2021) NSF grant #2052268

Saffir-Simpson gone bad

Example: Hurricane Sally

“If it would have been a three or
higher, we would have left”
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Tropical Cyclone Severity Scale (TCSS)

* One category for all major hazards
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Adequately reflecting the severity of tropical cyclones using the
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new Tropical Cyclone Severity Scale
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For decades, and have been warning ities in coastal areas for
b matbor i e i a0 imminent trapical cyclone (TC) using the Saffir-Simpson Hurricane Wind Scale (SSHWS). The
e e SSHWS categorizes a TC based on its maximum wind speed, and is used in defining evacuation
(GMom strategies and humanitarian response. However, the SSHW'S considers only the wind hazard of a

TC, whereas & TC can also cause severe conditions through its high storm surges and extrense
rainfall, triggering coastal and inland flooding. Consequently, the SSHWS fails to mirror the TC's
total severity. This becames evident when loaking at past events such as Hurricane Harvey (2017),
which was classified as a Tropical Storm while it caused widespread flooding in the Houston (TX}
area, with precipitation totals exceeding 1.5 m. Without including storm surge and rainfall

uate risk ion with the SSHWS can be challenging, as the public can
(mistakenly) perceive a low-category TC as a bow-risk TC. To overcome this, we propose the new
Tropical Cyclone Severity Scale (TCSS) that includes all three major TC hazards in its classification.
The new scale preserves the categorization as wsed in the SSHWS, to maintain familiarity amongst
the general public. In addition, we extend the scale with a Category 6, to support communication
about the most exireme TCs with multiple hazards. The TCSS is designed 10 be applicd on 2
local-scale, herely iing local-scale risk ion efforts and evacuation strategies
ptnmloaTl:]andﬁlLﬂem]ecanbeusedfnfmkmmmmmtmnanbnlhlhemlalﬂ:mkand
on the categories of the separate hazards. which can be valuable especially in cases when one hazard
is the predominant risk factor, such as excess rainfall triggering flooding.

L. Introduction wind speeds exceeding 33 m s, Le. of at least hur-

ricane strength, and wses the casifications ‘tropical
Chver the past decades, tropical eydones (TCs) have  storm’ and ‘tropical depression for weaker storm sys-
padympundlthwlhAﬂmmRMmu mm}bnmmn:mdhn&mlhﬂm
ing barge economic damage and loss of Life through  TC-related fatalities in the U5, are not dby wind
their high wind speeds, storm surges, and precipit-  (§%), but by storm suzge (49%) and rainfal (27%)
ation. Some examples are Hurricane Sandy (2012),  (Rappaport 2014). For instance, Hurricane Katrina
with over §70 billion in damage, and the 2017 Hur- (2005 was chassified a5 a Category 3 at Landfall with
ricanes Harvey, Irma and Masia, with total damages  wind speeds of around 35 m s~ but its 8.6 m storm
exceeding 5260 billion {NOAA 20204). To commu-  surge cansed widespread levee falure around New
nicate about the potential threat of the TC. metear-  Orleans (LA). resulting in over 1800 casualties and
lagi dy classify o i and ds 125 balkion USS in damage. making it the costliest U5,
falkowing the Saffir-Simpson Husrcane Wind Scale  TC to date (NOAA 2020}, Another example is Hur-
(SSHWS; Simpson and Saffic (1974)). The SSHWS  ricane Harvey (2017), which weakened to 2 tropical
categorizes @ TCs wind speed on @ scale of 1-5 for  storm after landfall in Texas, but became the highest

0 321 T Assbontsl. Publishd by BIF Publihing L
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Tropical Cyclone Severity Scale (TCSS)
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Abstract
For decades, and ‘have been warning. ities in coastal areas for

an imminent tropical cyclone (TC) using the Saffir-Simpson Hurricane Wind Scale (SSHWS). The
SSHWS categorizes a TC based on its maximum wind speed, and is used in defining evacuation
strategies and humanitarian response. However, the SSHWS considers only the wind hazard of a
TC, whereas 2 TC can also cause severe conditions through its high storm surges and extreme
rainfall, triggering coastal and inland flooding. Consequently, the SSHWS fails to mirror the TC's
total severity. This becomes evident when looking at past events such as Hurricane Harvey (2017),
which was classified as a Tropical Storm while it caused widespread flooding in the Houwston (TX)
area, with precipitation totals exceeding 1.5 m. Without including storm surge and rainfall

ion, adequate risk on with the SSHWS can be challenging, as the public can
(mistakenly) perceive a low-category TC as a bow-risk TC. To overcome this, we propose the new
Tropical Cyclone Severity Scale (TCSS) that includes all three major TC hazards in its dlassification.
The new scale preserves the categorization as wsed in the SSHWS, to maintain familiarity amongst
the general public. In addition, we extend the scale with a Category 6, to support communication
about the most extreme TCs with multiple hazards. The TCSS is designed 1o be applied on 2
local-scale, hereby supporting local-scale risk communication efforts and evacuation strategies
prior toa TC landfall. The scale can be used for risk communication on both the total TC risk and
on the categories of the separate hazards, which can be valuable especially in cases when one hazard
is the predominant risk factor, such as excess rainfall triggering flooding.

L. Introduction wind speeds exceeding 33 m s, Le. of at least hur-

ricane strength, and wses the casifications ‘tropical
Cver the past decades, tropical cyddones (TC3) have  storm’ and ‘tropical depression’ for weaker storm sys-
pallyunp-undll:szlhAﬂamx.ﬂMmu mnx}luwmrnznlmdnhnﬂ:mlhﬂmnﬂ
ing large econamic damage and loss of life through  TC i the U5, are not caused by wind

their high wind speeds, storm surges, and precipit-
ation. Some examples are Hurricane Sandy (2012),
with over $70 bllion in damage, and the 2017 Hur-
ricanes Harvey, trma and Maria, with total damages
exceeding 5260 billion (NOAA 20204). To commu-
nacate about the potential threat of the TC. metear-
logi: v classif i . < dsmends

(B%), but by storm surge (49%) and rainfall (27%)
(Rappapart 2014). For instance, Hurricane Katrina
(2005) was chassified as a Category 3 at landfall with
winsl speeds of around 55 m 5=, but its B6 m storm.
surge cansed widespread levee failure asound New
Orleans (LA). resulting in over 1800 casualizes and
125 billion LS in o miaking it the costliest U5,

fallkowing the Saffir-Simpson Hurricane Wind Scale
(SSHWS; Simpson and Saffir (1974)). The SSHWS
categorizes a TCs wind speed on @ scale of 1-5 for

TC o dhate (NOAA 20204). Another example is Hue-
ricane Harvey (2017), which weskened to a tropical
storm after landfall in Texs, bt became the highest

0 321 T Assbontsl. Publishd by BIF Publihing L




UNIVERSITY OF AMSTERDAM
Amsterdam School of Economics

Tropical Cyclone Severity Scale (TCSS)

* One category for all major hazards
* (Categories 0 —5

* (Category 6 for most extreme cases

HURRICANE ETORM

BURGE

5

ELEVAT I ONS

10F Putisting Emvieom, Res. Lere 16 (2001) 01448 TiLgec 1 desi ey 01088/ 1745-7326abd 131

ENVIRONMENTAL RESEARCH
LETTERS

@ T
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For decades, and ‘have been warning. ities in coastal areas for
e mthenty st i 41 imminent tropical cyclone (TC) using the Saffir-Simpson Hurricane Wind Scale (SSHWS). The
e e SSHWS categorizes a TC based on its maximum wind speed, and is used in defining evacuation

strategies and humanitarian response. However, the SSHWS considers only the wind hazard of a
TC, whereas 2 TC can also cause severe conditions through its high storm surges and extreme
rainfall, triggering coestal and inland flooding, Consequently, the SSHWS fails to mirror the TC's
total severity. This becomes evident when looking at past events such as Hurricane Harvey (2017),
which was classified 2s a Trapical Storm while it caused widespread flooding in the Houston (TX)
area, with precipitation totals exceeding 1.5 m. Without including storm surge and rainfall

ion, adequate risk on with the SSHWS can be challenging, as the public can
(mistakenly) perceive a low-category TC as a low-risk TC. To overcome this, we propose the new
Tropical Cyclone Severity Scale (TCSS) that includes all three major TC hazards in its dlassification.
The new scale preserves the categorization as wsed in the SSHWS, to maintain familiarity amongst
the general public. In addition, we extend the scale with a Category 6, to support communication
about the most extreme TCs with multiple hazards. The TCSS is designed 1o be applied on 2
local-scale, hereby supporting local-scale risk communication efforts and evacuation strategies
prior toa TC landfall. The scale can be used for risk communication on both the total TC risk and
on the categories of the separate hazards, which can be valuable especially in cases when one hazard
is the predominant risk factor, such as excess rainfall triggering flooding.

L. Introduction wind speeds exceeding 33 m s, Le. of at least hur-

ricane strength, and wses the casifications ‘tropical
Chver the past decades, tropical eydones (TCs) have  storm’ and ‘tropical depression for weaker storm sys-
pudyunr.mduhzmdu\dmmmmu tems. However, recent research has showen that most
ing barge economic damage and loss of Life through  TC-related fatalities in the U5, are not dby wind
their high wind speeds. storm surges, and precipit-  (8%), but by storm surge (49%) and rainfall (27%)
ation. Some examples are Hurricane Sandy (2012),  (Rappaport 2014). For instance, Hurricane Katrina
with over §70 billion in damage, and the 2017 Hur- (2005 was chassified a5 a Category 3 at Landfall with
ricanes Harvey, Irma and Masia, with total damages  wind speeds of around 35 m s~ but its 8.6 m storm
exceeding 5260 billion {NOAA 20204). To commu-  surge cansed widespread levee falure around New
nicate about the potential threat of the TC. metear-  Orleans (LA). resulting in over 1800 casualties and
lagi dy classify o i and ds 125 balkion USS in d making it the liest LS.
falkowing the Saffir-Simpson Husrcane Wind Scale  TC to date (NOAA 2020}, Another example is Hur-
(SSHWS; Simpson and Saffic (1974)). The SSHWS  ricane Harvey (2017), which weakened to 2 tropical
categorizes @ TCs wind speed on @ scale of 1-5 for  storm after landfall in Texas, but became the highest
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Tropical Cyclone Severity Scale (TCSS)

* One category for all major hazards
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SURGE - ELEVATIONS
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* (Categories 0 —5

* (Category 6 for most extreme cases

* Pre-landfall predictions
(for risk communication)
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For decades, and ‘have been warning. ies in coastal areas for
e mthenty st i 41 imminent tropical cyclone (TC) using the Saffir-Simpson Hurricane Wind Scale (SSHWS). The
e e SSHWS categorizes a TC based on its maximum wind speed, and is used in defining evacuation

strategies and humanitarian response. However, the SSHWS considers only the wind hazard of a
TC, whereas 2 TC can also cause severe conditions through its high storm surges and extreme
rainfall, triggering coestal and inland flooding, Consequently, the SSHWS fails to mirror the TC's
total severity. This becomes evident when looking at past events such as Hurricane Harvey (2017),
which was classified 2s a Trapical Storm while it caused widespread flooding in the Houston (TX)
area, with precipitation totals exceeding 1.5 m. Without including storm surge and rainfall

sdequste risk with the SSHWS can be challenging, as the public can
(mistakenly) perceive a low-category TC as a low-risk TC. To overcome this, we propose the new
Tropical Cyclone Severity Scale (TCSS) that includes all three major TC hazards in its dlassification.
The new scale preserves the categorization as wsed in the SSHWS, to maintain familiarity amongst
the general public. In addition, we extend the scale with a Category 6, to support communication
about the most extreme TCs with multiple hazards. The TCSS is designed 1o be applied on 2
local-scale, hereby supporting local-scale risk communication efforts and evacuation strategies
prior toa TC landfall. The scale can be used for risk communication on both the total TC risk and
on the categories of the separate hazards, which can be valuable especially in cases when one hazard
is the predominant risk factor, such as excess rainfall triggering flooding.

L. Introduction wind speeds exceeding 33 m 5=, Le. of at least hur
ricane strength, and wses the casifications ‘tropical
Cver the past decades, tropical cyddones (TC3) have  storm’ and ‘tropical depression’ for weaker storm sys-
greatly impacted the North Adantic region, caus-  tems. Howeves, recent research bas shown thas most
ing large economic damage and loss of life through  TCerelated fatakities in the LS. arenot cansedby wind

their high wind speeds, storm surges, and precipit-
ation. Some examples are Hurricane Sandy (2012),
with over $70 bllion in damage, and the 2017 Hur-
ricanes Harvey, trma and Maria, with total damages
exceeding 5260 billion {NOAA 20204). To commu-
nacate about the potential threat of the TC. metear-
logi: v classif i . )

(%), but by storm surge (49% ) and rainfall (27%)
(Rappaport 2014). For instance, Hurricane Katrina
(2005 was chassified a5 a Category 3 at landfall with
winsl speeds of around 55 m 5=, but its B6 m storm.
surge cansed widespread levee failure asound New
Orleans (LA). resulting m over 1800 casalties and
125 billion LS in o miaking it the costliest U5,

fallkowing the Saffir-Simpson Hurricane Wind Scale
(SSHWS; Simpson and Saffir (1974)). The SSHWS
categorizes a TCs wind speed on @ scale of 1-5 for

TC 1o date (NOAA 2020a). Alulhnmluplris Hur-
ricane Harvey (2017), which weskened to a tropical
storm after landfall in Texs, bt became the highest
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Tropical Cyclone Severity Scale (TCSS)
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Abstract
For decades, ists and ‘have been warning. ies in coastal areas for

an imminent tropical cyclone (TC) using the Saffir-Simpson Hurricane Wind Scale (SSHWS). The
SSHWS categorizes a TC based on its maximum wind speed, and is used in defining evacuation
strategies and humanitarian response. However, the SSHWS considers only the wind hazard of a
TC, whereas 2 TC can also cause severe conditions through its high storm surges and extreme
rainfall, triggering coastal and inland flooding. Consequently, the SSHWS fails to mirror the TC's
total severity. This becomes evident when looking at past events such as Hurricane Harvey (2017),
which was classified as a Tropical Storm while it caused widespread flooding in the Houwston (TX)
area, with precipitation totals exceeding 1.5 m. Without including storm surge and rainfall

i adequate risk with the SSHWS can be challenging, as the public can
(mistakenly) perceive a low-category TC as a low-risk TC. To overcome this, we propose the new
Tropical Cyclone Severity Scale (TCSS) that includes all three major TC hazards in its dlassification.
The new scale preserves the categorization as wsed in the SSHWS, to maintain familiarity amongst
the general public. In addition, we extend the scale with a Category 6, to support communication
about the most extreme TCs with multiple hazards. The TCSS is designed 1o be applied on 2
local-scale, hereby supporting local-scale risk communication efforts and evacuation strategies
prior toa TC landfall. The scale can be used for risk communication on both the total TC risk and
on the categories of the separate hazards, which can be valuable especially in cases when one hazard
is the predominant risk factor, such as excess rainfall triggering flooding.

L. Introduction wind speeds exceeding 33 m s, Le. of at least hur-
ricane strength, and wses the casifications ‘tropical
Cver the past decades, tropical cyddones (TC3) have  storm’ and ‘tropical depression’ for weaker storm sys-
greatly impacted the North Atlantic region, cans-  tems. Howeves, recent research bas shovwn that most
ing large economic damage and loss of life through  TCerelated fatakities in the LS. arenot cansedby wind

their high wind speeds, storm surges, and precipit-
ation. Some examples are Hurricine Sandy (2012),
with over $70 bllion in damage, and the 2017 Hur-
ricanes Harvey, Irma and Maria, with total damages
exceeding 5260 billion {NOAA 20204). To commu-
nacate about the potential threat of the TC. metear-

logi: v classif i . )

(%), but by storm surge (49% ) and rainfall (27%)
(Rappaport 2014). For instance, Hurricane Katrina
(2005 was chassified a5 a Category 3 at landfall with
winsl speeds of around 55 m 5=, but its B6 m storm.
surge cansed widespread levee failure asound New
Orleans (LA). resulting in over 1800 casmalties and
125 ballion LS8 in miaking it the costliest U5,

y
fallkowing the Saffir-Simpson Hurricane Wind Scale
(SSHWS; Simpson and Saffic (1974)). The SSHWS
categorizes o TC's wind speed on 2 scale of 1-5 for

TC to date (NOAA 20204). Another example is Hur.
ricane Harvey (2017), which weshened to s tropical
storm afier landfall in Texas, but becanse the highest
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Tropical Cyclone Severity Scale (TCSS)

One category for all major hazards
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Using a synthetic storm track
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Using a synthetic storm track to build scenarios

Table 1: Overview of scenarios

Wind Rain Surge  Category  Calegory

Name (mph) (inches) (feet) SSWIIS TOSS istorical example  Main hazard
Chi 130 24 8 3 1 Irma (2017) Rain
Lambda T4 8 4 ] 1 Gordon (2018) Rain
Omega 108 20 4 2 3 Alex (2010) Wind

Nu 86 31 10 1 5 Florence (2018) Rain

Rho 153 8 20 1 5 Emily (2005) Surge
Sigma 108 8 4 2 2 Bertha (1996) Wind

Tau 130 8 8 3 ‘ Fran (1996) Wind

Phi 130 12 10 3 D Katrina (2005) Surge
Theta 164 31 10 5 6 Michael (2018) All hazards
Psi 130 31 4 3 D Sally (2020) Rain
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“® Amsterdam School of Economics Imagine you live in Hypothetical City (see image below). We will now askyou a

couple of questions about a hypothetical scenario of an imminent hurricane

approaching Hypothetical City. Please answer these questions as if you are
living in Hypothetical City.

Hurricane Hypothetical
Different on Saffir-Simpson and TCSS

General coastline
Dependent variables:
* Evacuation intent
* Worry

* Precautionary measures
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2 x 2 between subjects treatments
* scale: Saffir-Simpson vs. TCSS

* format: graphic vs. text-only




Hurricane Phi expected to make
landfall in Home City as a Category 3

storm on Wednesday
Hurricane Omega bringing winds up to 130 mph and 12 inches of rain to Home

City region. Storm surge estimates are up to 10 feet. Category 3 on the Saffir-
Simpson Hurricane Wind Scale. You can find more information here (Link

opens in a new window. Source: Hypothetical Weather Service).

Saffir-Simpson with
and without graphic



Hurricane Phi expected to make
landfall in Home lty as a Category 3

storm on Wednesday
Hurricane Omega bringing winds up to 130 mph and 12 inches of rain to Home

City region. Storm surge estimates are up to 10 feet. Category 3 on the Saffir-
Simpson Hurricane Wind Scale. You can find more information here (Link

opens in a new window. Source: Hypothetical Weather Service).

Saffir-Simpson with
and without graphic

Hurricane Phi expected to make

landfall in Home 1ty as a Category 3
storm on Wednesday

Hurricane Omega bringing winds up to 130 mph and 12 inches of rain to Home
City region. Storm surge estimates are up to 10 feet. Category 3 on the Saffir-
Simpson Hurricane Wind Scale. You can find more information here (Link

opens in a new window. Source: Hypothetical Weather Service).

Current infermation: X

v lpetion X000 M 0K W

Forecast positions:

W Tropics| Cycions (0 PosyPoten il TC
Btz suslniced wind 2xx mph Smlined wrdn D= 30 emph
Syt NW al 5x mih 53T mph H F-1100mph M > 115 mph

Paotential track area: Watches: Warnings: Current wind extent:
>, Doy 13 Dary 4-5 Homizare  Tropsim [ Momcane [T s ([ temcane |0 Trop Sim




TCSS with and
without graphic

Hurricane Phi expected to make
landfall in Home 1ty as a Category 5

storm on Wednesday
Hurricane Omega bringing winds up to 130 mph and 12 inches of rain to Home

City region. Storm surge estimates are up to 10 feet. Category 5 on the Tropical
Cyclone Severity Scale. You can find more information here (Link opens in a
new window. Source: Hypothetical Weather Service).

Hurricane Phi expected to make

landfall in Home 1ty as a Category 3
storm on Wednesday

Hurricane Omega bringing winds up to 130 mph and 12 inches of rain to Home
City region. Storm surge estimates are up to 10 feet. Category 3 on the Saffir-
Simpson Hurricane Wind Scale. You can find more information here (Link

opens in a new window. Source: Hypothetical Weather Service).

Current infermation: X
CEnher localion X6 X M OCW
Btz suslniced wind 2xx mph Smlined wrdn

Ferecast positions:
W Tropics| Cycions (0 PosyPoten il TC

D= 30 mgsh
Syt NW al 5x mih 53T mph H F-1100mph M > 115 mph

Paotential track area: Watches: Warnings: Current wind extent:
>, Doy 13 Dary 4-5 Homizare  Tropsim [ Momcane [T s ([ temcane |0 Trop Sim




TCSS with and
without graphic

Hurricane Phi expected to make

landfall in Home City as a Category 5

storm on Wednesday
Hurricane Omega bringing winds up to 130 mph and 12 inches of rain to Home

City region. Storm surge estimates are up to 10 feet. Category 5 on the Tropical
Cyclone Severity Scale. You can find more information here (Link opens in a
new window. Source: Hypothetical Weather Service).

Hurricane Phi expected to make
landfall in Home City as a Category 5
storm on Wednesday

Hurricane Omega bringing winds up to 130 mph and 12 inches of rain to Home
City region. Storm surge estimates are up to 10 feet. Category 5 on the Tropical
Cveclone Severity Scale. You can find more information here (Link opensina
new window. Source: Hypothetical Weather Service).

Hurricane Phi: category 5
on the Tropical Cyclone Severity Scale (Forecast/Advisory)

cﬂqfu{y category category NERIERORNN category category
3 4 - f
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More information

Display of 4 maps in NOAA style
* Cone

* Wind Speed Probabilities

* Rainfall

* Storm Surge

Tropical-Storm-Force Wind Speed Probabilities

For the 120 hours (5.00 days) from X AM CDT DAY MONTH XX to X AM CDT DAY MONTH XX

Note: The cone contains the probable storm path of the storm center but does not show
the size of the storm. Hazardous conditions can occur outside of the cone.

Hurricane Hypothetical
Day Month, XX, 20X

Current information: X Forecast positions:
Center lpeation XX.X N XXX W @ Tropical Cyclone O PostiPotential TG

D <39 mph
Niovement NV at xx mpn S 33-73 mph H 74-110 mpn M > 110 mpn

Probability of tropical-storm-force winds (1-minute average >= 39 mph) from all tropical cyclones

Potential track area: Watches: Warnings: Current wind extent: © indicates Hurricane Hypothetical center location at XX AM CDT DAY MONTH X, 20XX (Forecast/Advisory #X)
Cuomrs (g oyes | vewe | opoe Wl BlTon ERmnen | e O —
5 10 20 30 40 50 60 70 80 90 %

EXPERIMENTAL
Peak Storm Surge Forecast Graphic

Hypothetical City

AA .
Hurricane Hypothetical
Day 1-6 Rainfall Forecast (inches)
Created X:XX PM CDT Day Month XX 20XX
Valid X:XX PM CDT Day Month XX 20XX
through X:XX PM CDT Day Month XX 20XX
DOC/NOAAI/NWSINCEP/WPC

The combination of dangerous storm surge and the fide will cause normally dry areas
near the coast to be flooded by rising waters moving inland from the shoreline. The water
could reach the following heights above ground somewhere within the indicated areas if
the peak surge oceurs at the time of high tide. The deepest water will occur along the
immediate coast near the landfall location, where the surge will be accompanied by large
and desiruciive waves, Surge-related floading depends on the relative timing of the surge
and the tidal cycle, and can vary greatly over short distances.

Hurricane Hypothetical

Day Month, XX, 20XX

XX AM CDT Advisory X

NWS National Hurricane Center

Local point maximum rainfall may be higher than shown.
See public advisories for the latest tropical cyclone information.




B UNIVERSITY OF AMSTERDAM
M Amsterdam School of Economics

Dependent Variables

* First 5 scenarios
 Evacuation intent
*  Worry
* Expected damage
* Last 5 scenarios

* Quiz questions (e.g. main hazard)

© Julieta Matos Castano
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Pilot data (n = 40 on Prolific)
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